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In this supplementary material, we first introduce the parameter initialization procedure, then describe the it-

erative parameter estimation based on expectation maximization (EM) algorithm or more precisely a general EM

method. Finally, the details of thresholds employed in promoter scanning is also presented. Since the probabilistic

model of SigmaPromoter for characterizing different σ promoters has elaborated in Method section, and the denota-

tions are quoted from that section as well. All these additional explanations will improve readers’ understanding of

model and algorithm of SigmaPromoter.

1 Parameter initialization

Though the convergence of EM method has been strictly proved, it is difficult to avoid solution from converging

to the local maximum. Furthermore, the initialization of parameters may benefit for achieving the global maximum

as the work of Bailey et al. demonstrates [1]. Therefore, we introduce a similar parameter initialization process,

which is derived from 20 most frequently occurred subsequences embedded in the learning set promoter sequences.

Since our model for promoter detection is divided into two PWMs that -10 region and -35 region are represented

respectively, therefore the initialization will be conducted for 400 times. We then employ a quantization rule, that the

appeared base in the initial subsequence is assigned with 0.52 as its probability of appearance while the probability

of other absent bases are assigned with 0.16, is applied to directly convert a subsequence into a PWM (see Table S7

as an example). For all these start point, we calculate the log-likelihood without iteration of parameter re-estimation.

Finally, the subsequence combination which lead to the highest log-likelihood is reserved as the true start point, and

runs EM iteration still convergence. During this initialization, we assume pj and qd obey a uniform distribution to

reduce the bias introduced by start site of a signal. Since our procedure has been proved to be effective for determine a

good start point, moreover, for a complex model to recognize promoter signal in two PWMs, it is much more efficient

than iterate from all 400 start points.

2 The details of SigmaPromoter algorithm

The iterative general EM algorithm applied in SigmaPromoter includes two steps: 1) E step as utilize expectation

as the estimation of intermediate variables; and 2) M step: because the partial differentiation of log-likelihood can

not be deduced to a analytical solution, thereby we just calculate the expectation for parameter and utilize these

estimations as substitutions to calculate log-likelihood as the M step for each iteration. As long as the log-likelihood

increases with step by step, this procedure coincide with the condition of general EM algorithm and is also convergent.

2.1 E step: the estimation of intermediate variables by expectation

In this subsection, we denote the parameters W,h, v, gm as:

W = W1 +W2, h = j +W1 + d, v = {A,C,G, T},
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gm =

{
j : m = 1,

h : m = 2.

Figure S1: The flow chart of two steps. (A) The flow chart of parameter learning by employing EM algorithm.

Through this procedure, both PWM elements and spacer distribution are iteratively calculated and these values

would converge. (B) The flow chart of σ promoters scanning. Through this procedure, every subsequence of 5’UTR

of a gene is scanned and classified as promoter sequence or not.

For each sequence Sk involved in training set, for the intermediate variable λkj as the estimation of pj is achieved

by calculating the marginal probability as follows:

λkj =

pj
dmax∑

d=dmin

qd
∏

l/∈[j,j+W1−1]
∪[h,h+W2−1]

bSkl

W1∏
i1=1

w1,i1,Sk,i1+j−1

W2∏
i2=1

w2,i2,Sk,i2+h−1

P (Sk|Ω)
, (1)

λk0 =

p0
L∏

l=1

bSkl

P (Sk|Ω)
. (2)
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Similarly, the estimation of qd can be calculated by intermediate variable ηkd as:

ηkd =

qd
L−W+1∑

j=1

pj
∏

l/∈[j,j+W1−1]
∪[h,h+W2−1]

bSkl

W1∏
i1=1

w1,i1,Sk,i1+j−1

W2∏
i2=1

w2,i2,Sk,i2+h−1

P (Sk|Ω)− p0
L∏

l=1

bSkl

, (3)

These intermediate variables are employed to describe the distribution of signal start site in generalized from training

set data.

Then, we calculate bases counted as background:

Bv =
N∑

k=1

 L∑
l=1

Tklv −
L−W+1∑

j=1

dmax∑
d=dmin

λkjηkd

(
W1∑
i1=1

Tk,i1+j−1,v +

W2∑
i2=1

Tk,i2+h−1

) . (4)

In this formula,

Tklv =

{
1 : Skl = v,

0 : Skl ̸= v.

Here, Skl = v denotes that the l-th base of Sk is base v, and Skl ̸= v denotes that they are not the same base.

Furthermore, the bases counted as either -10 region or -35 region is:

Dmiv =
N∑

k=1

L−W+1∑
j=1

dmax∑
d=dmin

λkjηkd

Wm∑
im=1

Tk,im+gm−1,v. (5)

Till now, all intermediate variables for further calculation of p0, pj , qd, bv, wmiv are given by marginal probability and

2.2 M step: variable substitution for maximizing log-likelihood function

In M step, the estimation of p0, pj , qd, bv, wmiv is substituted as the expectation of corresponding intermediate

variables as:

p̂j =

N∑
k=1

λkj

L−W+1∑
j=1

N∑
k=1

λkj +
N∑

k=1

λk0

. (6)

p̂0 =

N∑
k=1

λk0

L−W+1∑
j=1

N∑
k=1

λkj +
N∑

k=1

λk0

. (7)
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q̂d =

N∑
k=1

ηkd

dmax∑
d=dmin

N∑
k=1

ηkd

. (8)

We hence derive the expectation estimation of bv as:

b̂v =
Bv∑
v
Bv

, (9)

and

ŵmiv =
Dmiv∑
v
Dmiv

. (10)

After all these expectation are calculated, we substitute parameters by their estimation to obtain the log-likelihood

score until the iteration fulfill the condition of termination. The criterion for convergence is:

δ =
∣∣L (Ω|S)t+1 − L (Ω|S)t

∣∣ < 1.0× 10−6 ·
∣∣L (Ω|S)t+1

∣∣ , (11)

or iteration step exceeds the maximum step limitation, which is 5000. Here, t represents t-th iterative step. In most

case, the iteration converges lower than 500 steps. The flow chart of training process described here are illustrated as

Figure S1 A.

Table S7. The example of conversion

from sequence to PWM

Base Sequence

T A T A A T

A 0.16 0.52 0.16 0.52 0.52 0.16

C 0.16 0.16 0.16 0.16 0.16 0.16

G 0.16 0.16 0.16 0.16 0.16 0.16

T 0.52 0.16 0.52 0.16 0.16 0.52

3 The details of thresholds employed in promoter scanning

As the statistics conducted by Okuda et al. indicates, the spacer of two consecutive genes correlates with promoter

sequence formation [2]. In Okuda’s study, adjacent genes are classified into three operon pairs: operon pair (OP),

sub-operon (SOP) and non-operon pair(NOP), within these categories, promoters or terminators may exist between

the last two types of gene pairs [2]. Furthermore, the fact that median spacer of SOPs and NOPs are larger than

median spacer of OPs demonstrates promoter sequences prefer wider intergenic spacers [2]. The study of Price et

al. [3] also speculates that a widely spaced operon implies complex regulation and leads to differentiated expression
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Table S8. Thresholds for different σ promoter

σ promoter Relation
Inter-genic Threshold

distance (bp) -35 region -10 region Total

σ70

parallel ≥ 100 1.0 3.0 5

divergent none 1.0 3.0 5

parallel < 100 1.0 3.0 7

σ38a

parallel ≥ 100 NA NA 4.2

divergent none NA NA 4.2

parallel < 100 NA NA 6.9

σ32

parallel ≥ 100 2.5 3.0 8

divergent none 2.5 3.0 8

parallel < 100 2.5 3.0 11.0

σ24

parallel ≥ 100 2.5 3.0 8.4

divergent none 2.5 3.0 8.4

parallel < 100 2.5 3.0 11.0
aσ38 promoter contains one binding site, so only the final score is necessary.

pattern—alternative transcription event. All these previous researches prove that the wider the intergenic is spaced,

the more probable a regulatory sequence embeds within the pair of genes.

According to these analysis of previous studies, for the promoter scanning procedure, we employ a criterion that

the threshold of promoter prediction is lower for gene pairs with a close spacing than for those with a wide spacing.

Therein, the intergenic distance greater or equal 100bp is defined as the wide spacing, and the close spacing represents

that the intergenic distance is less than 100bp. Table S8 is provided to show the detail thresholds for discrimination on

a putative promoter sequence. By integrating the relationship between two consecutive genes with their spacer, these

thresholds guarantee a high specificity for SigmaPromoter prediction and characterize promoters to a more rigorous

extent. Our accurate prediction shows that some qualitative intrinsic rules may bury in these biological features, and

a further analysis is still in urgent need to unveil the complex mechanism of the origin of multiple σ factor induced

transcriptional regulatory. The flow chart of promoter scanning process is illustrated as Figure S1 B.
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